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Borel o—Algebra of the Real Line. As has been repeatedly stressed, probability theory
is concerned with the random occurrence of events. In particular, we are often concerned
with a sample space of real numbers, 2 = R, and corresponding measured real-valued
experimental outcomes forming events of the following type:

1. A real number (experimental outcome) takes a specified real value v, z = v € R, in
which case we say that the singleton or point-set event {v} C R occurs.

2. A real number (outcome) takes it value in one of the following open— and closed—
half-spaces: (—oo,w) = {z|—00 < x <w}, (v,00) = {z|v <z <0}, (—o0,w] =
{z]—00 <z <w}, [v,00) = {z|v<z<oo}. If an outcome takes its value in a
specified half-space we say that a half-space event occurs.

3. A real number takes its value either in the closed interval [v,w] = {z|v <z < w},
in the open interval (v,w) = {z|v <z <w}, in the half-open interval (v,w] =
{z|v <z <w}, orin the half-open interval [v,w) = {z|v <z < w}. If an outcome
takes its value in such an interval, we say that an interval event occurs. Note that
we can view the occurrence of the point-set event {v} as equivalent to the occurrence
of the degenerate interval event [v,v]. Similarly, we can view the half-space events as
interval events of a limiting type, such as [v,00) = lim,,_,o[v, w), etc.
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The smallest 0—Algebra of subsets of {2 = R which contains such interval events is called
the Borel algebra' (or Borel field), B = B(R).? This o-algebra is closed under countable
intersections, unions, and complements of the just—mentioned event—intervals. The Borel
algebra B contains events corresponding to logical boolean questions that can be asked
about event-intervals in R.?> Events (sets) in the Borel algebra B are called Borel sets.

e Given a probability measure, Pz, on B, we then have the very important and useful
Borel Probability Space, (R, B, P;), whose events are the Borel sets, and which therefore
include the open— and closed—intervals in R.

Measurable Functions and Random Variables. We are interested in real-valued func-
tions, w = f(w) € R, which are single-valued* mappings between the outcomes in a sample

space €2 and the real numbers R,
f:Q=R.

Given a function f, the Inverse Image, or Pre—image, of a set of points M C R is defined as
fH M) ={w| f(w) € M} C Q.
By definition, a function f is A-measurable, or just measurable, if and only if,
ffi(M)e A, VMeB.

Given a probability space (€2, A, P,) and an A-measurable function f, we can legitimately
apply the probability measure P, to the pre-image of any Borel set M € B as f~1(M) must
be an event in A. If this is the case, we say that the function f is an A-measurable random
variable.

Definition of a Random Variable

Given a sample space, 2, with an associated o—algebra, A, of events
in Q, a Random Variable, X : Q — R, is an A-measurable real-valued
function on ).

We will always use upper case Roman letters to indicate a random variable to emphasize the
fact that a random variable is a function and not a number. Note that whether or not X is

INamed after noted French mathematician Félix Edouard Emile Borel, 1871-1956.

2For you math-types, more generally the Borel o—algebra of a topological space X, B(X), is the smallest
o—algebra of subsets of X that contains every open set of X. Such issues are studied in graduate mathematical
probability courses, such as Math 280 at UCSD.

31.e., “Did the experiment result in a measurement value between 1 and 5 inclusive, or between 11 and
17 noninclusive, or strictly greater than 357”

4This statement is actually redundant. By definition, functions must be single-valued mappings. Non—
single-valued mappings are called relations. In CSE 20, the properties of both functions and relations are
studied in some detail.
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an A-measurable random variable depends on the the function X and the specific choice of
the pair (Q2,.4).°

A most important fact is that a random variable, X, on a probability space (2, A, P,)
induces a probability measure on (R, B) via the definition,

Ps(M) 2 P (X' (M)), VMeB.

Thus, corresponding to the probability space (£, .4, P,) and the random variable X, we have
the induced probability space (R, B, Ps). Given a probability space (R, B, Ps) induced by the
random variable X, we refer to (£2,.A, P,) as the base space, or the underlying probability
space.

If we are interested solely in real-valued events which are outcomes in the Borel prob-
ability space (R, B, P3), then often there is no need to work with the underlying space.
Typically, in such cases, either a Borel probability space is directly assumed to exist (and
we never directly consider the underlying space, except to acknowledge its existence) or the
Borel probability space is constructed once from the definition of the induced probability
measure on B, after which the underlying space is ignored and we work solely with the Borel
probability space thereafter.%

It is a fact that if X is a random variable for (€, .4, P,), then there exists a smallest
(or coarsest) o—algebra, A’, of Q for which X is still measurable. We denote the smallest
o—algebra by A’ = ¢(X). This smallest o—algebra, o(X), is given by

o(X)=X"'B)={ACQ|A=X"'(M), M B} .

Necessarily, then, o(X) C A and therefore X is also a random variable for the (possibly”)
coarser probability space (2,0(X), P,). Measurements of experimental outcomes in the
corresponding Borel space (R, B, P;) can never allow us to distinguish between the existence
of (2, A, P,) or the coarser underlying space (2, 0(X), P,). If all we have is data in the Borel
algebra, then no harm incurs by working with the coarser underlying algebra (Q, o(X), P,).

Measurable Space (£2,.4). If Aisa o-algebra of outcomes in 2, we call the pair (2, .4) a
measurable space. A random variable X, then, is a measurable function from the measurable
space (€2, A) to the measurable Borel space (R, B).® Note that a probability space, (22, A, P),
is a measurable space (£2,.4) plus a probability measure P.

5That is, an A-measurable random variable X might not be measurable with respect to a different o—
algebra of Q. However, if A’ is a o—algebra of Q such that A C A’, then X is also A’ measurable and is
then a random variable for the “finer” system (£2,.4"). For example, if A’ is the power set of 2 (the “finest”
o—algebra of Q) and A the trivial o—algebra of Q (the coarsest o—algebra), then an .4-measurable X is also
A’ measurable.

SHowever, when dealing with jointly random variables, random vectors, or random processes (as discussed
subsequently) one usually postulates the existence of an underlying probability space.

It might be the case that o(X) = A.

8We also say that X is A-measurable to emphasize the fact that measurability is the requirement that
XY (M) € Afor all M € B. Thus X can be measurable with respect to a o—algebra A while failing to be
measurable with respect to a different o—algebra, A’, of Q.
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Distribution Function. Let the Borel set M, denote the closed half-space,
M, = (=o0,z] = {¢|~c < €<}, zeR.

If X is a random variable for the probability space (2, .4, P,), its (Cumulative) Distribution
Function Fx is defined by

Fx(z) & Ps(M,) = Po(X Y(M,)) = P,({w|X(w) € M,}), VrcR.

Note that the A-measurability of the random variable X and the existence of the probability
measure P, on A-events are both crucial to this definition. A distribution function has
several important properties which are discussed in Section 3.2 of Leon-Garcia.

It can be shown that knowing the probability distribution function, F'x, for a random
variable X is entirely equivalent to knowing its X—induced probability measure, P, on
the algebra of Borel subsets of R. They contain exactly the same information about the
probability of events which are Borel sets in R. Therefore, if we know the distribution
function for the random variable X and if we are interested solely in real-valued events which
are outcomes in the Borel probability space (R, B, Py), then there is no need to work with
the underlying probability space or the induced probability measure Pz. The distribution
function, F'y, alone contains all the information we need to compute the probability of Borel
events.

Random Variable defined in Basic Probability Courses. In many basic courses on
probability a random variable is not defined as a function. In such courses a distinction is
made between a random variable X and its realization value x, but this distinction can be
unclear. We give two different (but closely related) interpretations for X as presented in such
basic probability courses that clearly shown the relationship between the random variable
X and the realization variable x.

1. X is a random variable as defined above. Let the underlying probability space (2, .4, P,)
be given by Q@ = R (so that w = z € R), A = B, and P, = Ps. Then the random
variable X : €2 — R is taken to be the identity map X = I, w = x +— x. With this
interpretation we have X (w) = X(z) = I(x) = x.

2. Let X = Q stand for a sample space of real numbers (e.g., @ = X = R). Thus a
sample space realization is given by w = x € X, which (by an abuse of notation) we
denote by X = x.9 Tacitly, the o-algebra of events, X, is comprised of the Borel sets
in X. Thus we are dealing with a probability space (X, X, Py) where in lieu of the
probability measure Py we work with a distribution function. In this interpretation,
the “random variable” X is shorthand for the measurable space (X, X).

9This is an abuse of notation because X is a set while x is a member of that set. Note that in the standard
interpretation of X as a function over a probability space Q (which we used in the first interpretation) there
is no problem in stating that X (w) = « (i.e., that x is the value of the function X operating on the realization
w € .). There is potential ambiguity in writing X = x since X is a function and « is a value in the codomain
of x, but there is no problem if it is understood that we mean X (w) = z.
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Jointly Random Variables. We say that random variables X and Y are jointly random
if they are both measurable mappings to the Borel algebra (R, B) from the same measurable
space (€2, A). Note that if X and Y are jointly random, then subsets of 2 like

XY M)NY~N(N), M,NéeB,

are events in A.

Stochastic Process, Random Process, Random Vector. A random process, or stochas-
tic process, is an indexed collection of jointly random variables { X;(-), ¢t € T'} where the index
set, T', is some subset of the real numbers.

If the index set is the set of natural numbers, N = {1,2,---}, then we call a collection
of jointly random variables { Xy (), k € N} a random sequence, or a discrete-time random
process

A finite collection of n jointly random variables, {Xx(-), 1 <k <n}, is called an n—-
dimensional random vector and is denote by

X =(Xy,---, X"
Note that the n—dimensional random variable X takes its values in R",

X(w)=x€R".

Almost Sure Equality of Random Variables. Two jointly random variables X and Y
are said to be equal almost surely, or in equal with probability 1, designated as X =Y a.s.
iff,
P{w|X(w) #Y(w)}) =0.
It can be shown that X =Y a.s. iff the events X ~!(M) and Y ~1(M) are equal almost
surely for each Borel set M € B.1°

Independence of Two Random Variables. Two jointly random variables on a prob-
ability space (€, A, P), are said to be independent, iff the events X '(M) and Y 1(N) are
independent for all Borel sets M, N. lLe., iff,

P(X Y M)NYYN))=P(X (M) -P(Y'(N)) VM,N €B.

Note that independence of two random wvariables depends on the probability measure
P. Two A-measurable random variables which are independent on the probability space
(Q, A, P) might be dependent on a probability space, (€2, A, P’), which has a different prob-
ability measure P’ # P. Thus, independence of random variables is a property which has to
be determined for each possible probability measure, P, used on a measurable space ({2, .A).

10Recall the definition of almost sure equality of events given the lecture supplement on probability con-
cepts.
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It can be shown that two random variables X and Y are independent iff the joint distri-
bution function of X and Y is equal to the product of the marginal distributions,

Fxy(x,y) = Fx(x)- Fy(y).

Equivalently, they are independent iff the joint probability density function, or probability
mass function, is equal to the product of the marginals,

fxy(z,y) = fx(x) - fyr(y).

Equivalence, Equality in Law, Equality in Distribution. Two random variables X
and Y are said to be equivalent, or equal in law, or equal in distribution, iff they have the
same probability distribution function,

FX(J?):Fy(fI}), VreR.
Equivalently, X and Y are equal in law iff
fx(x) = fy(z), VzeR.

Equality in law is a very weak (indeed the weakest) form of stochastic equivalence. If
two continuous random variables X and Y are equal in law and independent!! then it is the
case that X # Y a.s. That is the equivalent random variables X and Y are almost surely
not equal, P({w|X(w) = Y(w)}) = 0, which is the exact opposite of almost sure equality!
Equality almost surely does implies equality in law (equivalence), but (as seen here) the
converse is not true. Equivalence of random variables has a very specific technical meaning
that must not be confused with the ordinary English language meaning of equivalence.

Independent Collection of Random Variables. An indexed set of random variables
{X;, t €T} is an independent collection of random wvariables iff given any finite subset of
the collection, the set of pre-images obtained by letting the random variables in this subset
pull-back all possible Borel sets forms an independent collection of events.

It can be shown that an indexed set of random variables is an independent collection iff
for any subset of random variables, X,,,, -+, X,,, drawn from this collection we have

fXal,"' ,Xan (1‘1, T lfL‘n) = fXa1 (1‘1) T fXan ("'Un) Y
or equivalently,
Fxy oo X (X1, 20) = Fx, (21) - Fx,, (7)),

Note, in particular, that if X is an n—dimensional random vector with independent com-
ponents, we must have that the joint pdf and cdf are both equal to the product of their
marginals,

Sx(x) = fx, (1) - fx, (2n)  and Fx(X) = Fx,(21) - Fx, (2n) -

1 Ag discussed subsequently, we say that they are independent and identically distributed or iid.
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ITD Sequence or IID Vector of Random Variables. Given a denumerable collection of
random variables (e.g., a countable random sequence or a finite-dimensional random vector)
we say that the collection is independent and identically distributed (iid) iff the collection is
independent and all random variables in the collection have exactly the same distribution
function.!?

If the random variables in an iid collection are all continuous random variables, then it
can be shown that almost surely no two of them are equal. That is, almost surely they all
take different values. This generalizes the two iid random variable case discussed above.

A collection of iid samples is known as a statistical sample or, more simply, as a sample.

121 e., all random variables in the collection are equal in law to each other and to a single random variable
having the distribution function in question.



